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Magnetics

Figure 7-1  Magnetic lines of force produced by a simple bar magnet,
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Figure 7-2 Representation of a magnet as an assemblage of small dipoles.
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Coulomb’s Law

We've mentioned attraction and repulsion, but what is the actual force exeried between two
magnetic poles? This force is stated in Coulomb's law,

(71

Magnetic Permeability is
~1 for water/air

Figure 7-3  Effect of magnetic permeability
on magnetic field strength,

Field Strength

The magnetic field strength H is the force a unit magnetic pole would experience if
placed at a point in a magnetic field which is the result of some pole strength m and where »

is distance of the point of measurement from m

(7-2)




Magnetic Moment

Magnetic Moment

If a bar magnet is placed in a uniform magnetic field H (Fig, 7-4), it will experience a pair
of equal forces acting parallel to each other but in opposite directions (a couple). The mag-
nitude of the couple is

C = 2(ml) H sin & (7-3)

where @ specifies the original crientation of the magnet in the field. The motion produced
by the couple is dependent on the magnitude of H as well as the value of @
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Intensity of Magnetization

A bar magnet possesses a fundamental property per unit volume known as the intensity af
magnetization 1. The magnitude of 1 is defined as the magnetic moment M per unit volume or

M

= {7-5)
volume
and, therefore,
r=_m__ m (7-6)
B volume B arca
Where Magnetic Moment, M, = ml
Magnetic Materials
Ferromagnetic
Diamagnetic
X
N
N
'\: Y Ferrimagnetic/Paramagnetic




Permanent Magnetization
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Figure -6 Hysteresis curve fof a ferimagnetic material in the presence of a magnetizing
field.
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Components
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The positions on the earth’s surface where § = 90° are known as the magnetic dip
poles (see Fig. 7-11), and the magnetic equator is defined by positions of i = 0°. At the dip
poles Z; and the intensity is approximately 70,000 nT (nanotesla). At the magnetic
equator, He = F;, and the intensity is approximately 30,000 nT. Note that the earth’s mag-
netic field v in intensity by more than 200 percent, whereas the gravity field varies only
by approximately 0.5 percent.
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Figure 7-11  Some important features of the earth’s magnetic field.
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Figure 7-14  Representative variation in magnetic field intensity compiled by returning to
a base station at short time intervals during a day’s work.
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Figure 7-15  Variations in total-ficld anomaly imensity as a function of longitude anc
latitude: for a given survey area.

Magnetic Susceptibility

Sedimentary rocks 0.00005 cgs emu
Metamorphic rocks 0.0003 cgs emu

Granites and rhyolites 0.0005 cgs emu
Gabbros and basalts 0.006 cgs emu
Ultrabasic rocks 0.012 cgs emu

Magnetic Potential

Utilizing Eq. 7-2 and remembering that we assume p = 1, we
have
v=-[&£ -2 (7-8)
o r
An especially useful feature of the potential is that we can find the magnetic field in a given
direction by taking the negative of the derivative of the potential in that direction. We utilize
this feature in the following section o derive equations for a dipole.




Dipole Equations

Dipole Equations

'I'h.c magnetic constitutes a ¢ ient approach to describe the magnetic field at a
point P due to a dipole. Consider the system illustrated in Figure 7-12(a). We assume that r
is much larger than /. From Eq. 7-8 the potential at P is
yv=1t_m » -
fi L] - ’

Using our assumption of r >> |, we have the relations

v - m m

‘J'—ricﬂ‘.ﬂ] r+ jlrwil‘i_
\2 I

V= ml cos 6
7 - [é] cos’ @
V= mi us‘l.\ﬁ _ M rl‘a:.!? (-1}
r r

For our purposes at this time, we wish 1o derive the radial and tangential components of the
field at P (see Fig. 7-12(b)). Recalling that we can determine the magnetic field in a given
direction by taking the negative of the derivative of the potential in that direction and noting
that #is in radians, we see that

dV 2Mcos 8

H =-2=2"""82 (7-12)
dr r
and
H, 1dV M -;i.n ) (7-13)
rodf r
Z {H M ¢ 3 3.
dz, _ dH, _ ("“:”‘0 =-2H =-22, (7-14)
dr dr r r ' r

Total Field Anomaly




(Fo+ B, ) = (Z+ 2) + (He + H)
and

El +2F F, + F}

= 7} 4 27,7, + 20+ HD + 2HH, + HD (7-15)
Because F; >>> F;, we ignore B2, Hi, and Z7, which gives

F} +2F F = Z} + 2Z,Z, + H} + 2H,.H, (7-16)
But £ = Z} + . s0 Eq. 7-16 reduces to B, F; = Z, Z, = H, H,, and

E, = 24[2—'-]+ H.l

(7-17)
Fﬂ. A

(7-18)

If H, does not lie along a magnetic meridian, we use the component of H, parallel w the
meridian, because this is the only effect of H, on the total anomaly. In such a case

f £, sini + H, cos

(7-19)

dZ; _ 1 2Msin@ _ 2Msin€ _ 4 He

—_ = 2 7-20
di r r v ( ’

Effect of a Monopole
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Effect of a Monopole

H, = -4 x(FA) (123
adx [x' +y 4z

and

(7-24)

The total anomalous field is calculated using the form of Eqg. 7-18. Since H, represents the
comg of the horizontal field in the direction of north, we have

F, = Z,sini + H, cosi (7-25)
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Figgure 7-18  Relationships and notation wsed 1o derive the magnesic field of a dipule
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Effect of a Dipole

Recalling the definition we adopted for a unit pole, the magnetic field intensity at P
due to the negative pole of the dipole is

R, = + MEA (7:26)
. e
and that due 1o the positive pole is
R, = -1 o KA (127
, 72 .

(3 [
Our next step is to determine the horizontal and vertical components of the magnetic field at
P due to each of the poles (-m and +m). These components are

Z, = Rysing,, Z, = R, sing, H, = R, cos¢,, and H, = R, cosg, (T-28)
The final expressions for the vertical and horizontal components simply are the sums of
each pole’s contribution to the component, or

Z, =7, +Z and H, =H,_ +H (7-29)

A

Effect of a Dipole

The total field is found as in the monopole example except that for the present derivation H,
is oriented parallel to a magnetic meridian, so we can use Eq. 7-18. Now let’s place these
results in a dynamic table. Once again check Figure 7-18(a) and (b), from which we devel-
op the following relationships:

(1) a = Lcos(180 - @), b= Lsin(180 — 8), and z, =z, + b

and r, = [(.r —a) + .:,.:}”‘

L and cos ¢, = (A—HJ
T A

msd,—i. sin @, =
r,

Effect of a Dipole

11



Effect of a Dipole

Magaetic fiekd intessiny (nT)

Effect in a Plane (2D)
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Figure 7-21  Relationships and notation used 10 derive the magnetic effect of a dipole ori-
ented parallel to 8 magnetic meridian at any point on an ty-surface.

Effect in a Plane (2D)
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Poisson’s Relation

is referred to as Poisson's relation (Dobrin,
ial V' is proportional to the deriva-

(7-30)

Remembering that the direction
of magnetization for our derivation is vertical or z, it follows that vertical- and horizontal-
field anomalies Z, and M, must be defined as

- iV 1 d'v
Z, =-2 =8 (7-31
4 dz  pG df !
and
H, :_ﬂ_L‘_I(ﬂ\ (7-32)
dx PG odx \ dz )

Poisson’s Relation

As the gravitational potential of a sphere is

4 i
. G—nRp
y M
v-SM__3 (7-33)
r r
then
s
[G 4 aRp
L3 (7-34)
(«% +
This gives us the vertical anomaly, which is
(7-35)

The horizontal anomaly follows similarly,
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